Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.

Identifieur interne : 000964 ( Main/Exploration ); précédent : 000963; suivant : 000965

Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.

Auteurs : Joanne M. Kingsbury [États-Unis] ; Maria E. Cardenas [États-Unis]

Source :

RBID : pubmed:26739646

Descripteurs français

English descriptors

Abstract

The Target of Rapamycin Complex I (TORC1) orchestrates global reprogramming of transcriptional programs in response to myriad environmental conditions, yet, despite the commonality of the TORC1 complex components, different TORC1-inhibitory conditions do not elicit a uniform transcriptional response. In Saccharomyces cerevisiae, TORC1 regulates the expression of nitrogen catabolite repressed (NCR) genes by controlling the nuclear translocation of the NCR transactivator Gln3. Moreover, Golgi-to-endosome trafficking was shown to be required for nuclear translocation of Gln3 upon a shift from rich medium to the poor nitrogen source proline, but not upon rapamycin treatment. Here, we employed microarray profiling to survey the full impact of the vesicular trafficking system on yeast TORC1-orchestrated transcriptional programs. In addition to the NCR genes, we found that ribosomal protein, ribosome biogenesis, phosphate-responsive, and sulfur-containing amino acid metabolism genes are perturbed by disruption of Golgi-to-endosome trafficking following a nutritional shift from rich to poor nitrogen source medium, but not upon rapamycin treatment. Similar to Gln3, defects in Golgi-to-endosome trafficking significantly delayed cytoplasmic-nuclear translocation of Sfp1, but did not detectably affect the cytoplasmic-nuclear or nuclear-cytoplasmic translocation of Met4, which are the transactivators of these genes. Thus, Golgi-to-endosome trafficking defects perturb TORC1 transcriptional programs via multiple mechanisms. Our findings further delineate the downstream transcriptional responses of TORC1 inhibition by rapamycin compared with a nitrogen quality downshift. Given the conservation of both TORC1 and endomembrane networks throughout eukaryotes, our findings may also have implications for TORC1-mediated responses to nutritional cues in mammals and other eukaryotes.

DOI: 10.1534/g3.115.023911
PubMed: 26739646
PubMed Central: PMC4777127


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 carde004@mc.duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26739646</idno>
<idno type="pmid">26739646</idno>
<idno type="doi">10.1534/g3.115.023911</idno>
<idno type="pmc">PMC4777127</idno>
<idno type="wicri:Area/Main/Corpus">000B26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B26</idno>
<idno type="wicri:Area/Main/Curation">000B26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B26</idno>
<idno type="wicri:Area/Main/Exploration">000B26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 carde004@mc.duke.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:regionArea>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Endosomes (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Transport Vesicles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Appareil de Golgi (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Endosomes (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Vésicules de transport (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Golgi Apparatus</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Appareil de Golgi</term>
<term>Complexes multiprotéiques</term>
<term>Endosomes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Vésicules de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mutation</term>
<term>Protein Transport</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Mutation</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
<term>Transport biologique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Target of Rapamycin Complex I (TORC1) orchestrates global reprogramming of transcriptional programs in response to myriad environmental conditions, yet, despite the commonality of the TORC1 complex components, different TORC1-inhibitory conditions do not elicit a uniform transcriptional response. In Saccharomyces cerevisiae, TORC1 regulates the expression of nitrogen catabolite repressed (NCR) genes by controlling the nuclear translocation of the NCR transactivator Gln3. Moreover, Golgi-to-endosome trafficking was shown to be required for nuclear translocation of Gln3 upon a shift from rich medium to the poor nitrogen source proline, but not upon rapamycin treatment. Here, we employed microarray profiling to survey the full impact of the vesicular trafficking system on yeast TORC1-orchestrated transcriptional programs. In addition to the NCR genes, we found that ribosomal protein, ribosome biogenesis, phosphate-responsive, and sulfur-containing amino acid metabolism genes are perturbed by disruption of Golgi-to-endosome trafficking following a nutritional shift from rich to poor nitrogen source medium, but not upon rapamycin treatment. Similar to Gln3, defects in Golgi-to-endosome trafficking significantly delayed cytoplasmic-nuclear translocation of Sfp1, but did not detectably affect the cytoplasmic-nuclear or nuclear-cytoplasmic translocation of Met4, which are the transactivators of these genes. Thus, Golgi-to-endosome trafficking defects perturb TORC1 transcriptional programs via multiple mechanisms. Our findings further delineate the downstream transcriptional responses of TORC1 inhibition by rapamycin compared with a nitrogen quality downshift. Given the conservation of both TORC1 and endomembrane networks throughout eukaryotes, our findings may also have implications for TORC1-mediated responses to nutritional cues in mammals and other eukaryotes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26739646</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>641-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.115.023911</ELocationID>
<Abstract>
<AbstractText>The Target of Rapamycin Complex I (TORC1) orchestrates global reprogramming of transcriptional programs in response to myriad environmental conditions, yet, despite the commonality of the TORC1 complex components, different TORC1-inhibitory conditions do not elicit a uniform transcriptional response. In Saccharomyces cerevisiae, TORC1 regulates the expression of nitrogen catabolite repressed (NCR) genes by controlling the nuclear translocation of the NCR transactivator Gln3. Moreover, Golgi-to-endosome trafficking was shown to be required for nuclear translocation of Gln3 upon a shift from rich medium to the poor nitrogen source proline, but not upon rapamycin treatment. Here, we employed microarray profiling to survey the full impact of the vesicular trafficking system on yeast TORC1-orchestrated transcriptional programs. In addition to the NCR genes, we found that ribosomal protein, ribosome biogenesis, phosphate-responsive, and sulfur-containing amino acid metabolism genes are perturbed by disruption of Golgi-to-endosome trafficking following a nutritional shift from rich to poor nitrogen source medium, but not upon rapamycin treatment. Similar to Gln3, defects in Golgi-to-endosome trafficking significantly delayed cytoplasmic-nuclear translocation of Sfp1, but did not detectably affect the cytoplasmic-nuclear or nuclear-cytoplasmic translocation of Met4, which are the transactivators of these genes. Thus, Golgi-to-endosome trafficking defects perturb TORC1 transcriptional programs via multiple mechanisms. Our findings further delineate the downstream transcriptional responses of TORC1 inhibition by rapamycin compared with a nitrogen quality downshift. Given the conservation of both TORC1 and endomembrane networks throughout eukaryotes, our findings may also have implications for TORC1-mediated responses to nutritional cues in mammals and other eukaryotes. </AbstractText>
<CopyrightInformation>Copyright © 2016 Kingsbury and Cardenas.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kingsbury</LastName>
<ForeName>Joanne M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 carde004@mc.duke.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022161" MajorTopicYN="N">Transport Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Golgi-to-endosome trafficking</Keyword>
<Keyword MajorTopicYN="N">phosphate-responsive network</Keyword>
<Keyword MajorTopicYN="N">rapamycin mechanism of action</Keyword>
<Keyword MajorTopicYN="N">ribosome biogenesis genes</Keyword>
<Keyword MajorTopicYN="N">sulfur-containing amino acid metabolism genes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26739646</ArticleId>
<ArticleId IdType="pii">g3.115.023911</ArticleId>
<ArticleId IdType="doi">10.1534/g3.115.023911</ArticleId>
<ArticleId IdType="pmc">PMC4777127</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiologyopen. 2014 Jun;3(3):271-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24644271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Aug 15;154(4):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Jul;17(7):3640-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9199298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jun 9;344(3):869-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4309-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2003 Nov;1(2):E28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Apr 15;11(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19928-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2002 Sep 15;19(12):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12210898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Oct;71(10):5692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 May 15;9(10):1869-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Oct;80(5):325-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008 Jul;1(1):23-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 15;15(10):2519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8665859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Dec;5(23):2729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1944-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Div. 2008 Jul 25;3:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18655704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Apr 1;25(7):767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jun;24(12):5534-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15169913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Dec;3(12):1389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Feb 1;21(3):456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19940020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 1;16(9):2441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transcription. 2011 May;2(3):135-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21826284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 May 10;91(10):4377-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8183917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Mar 1;21(5):833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 14;152(4):791-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Feb 17;586(4):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22285489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2001 Jul;2(7):476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11422941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 Oct;107(4):1369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3049619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 31;278(5):3265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Sep;156(1):105-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Oct;11(10):3365-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 15;122(Pt 12):2089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19494127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1978 Mar;116(3):275-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">348146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jan 12;271(5246):209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8539622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 3;30(15):3052-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1994 Dec;27(1):23-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7750142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
</region>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000964 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000964 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26739646
   |texte=   Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26739646" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020